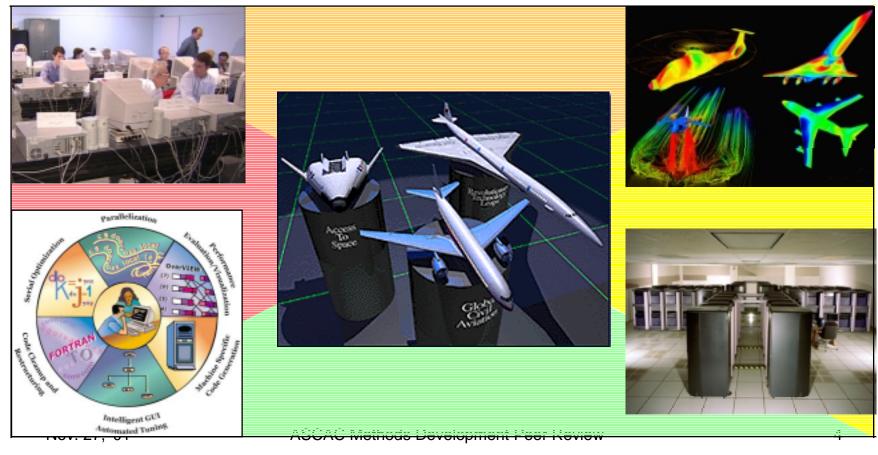
Multidisciplinary High-Fidelity Analysis of Aerospace Vehicles: Overview of HSCT4.0 Application

Jim Townsend

ASCAC Methods Development
Peer Review
November 27-29, 2001

HSCT4.0 — Outline


- Background:
 - Purpose of HSCT4.0
 - History
- Technical Aspects:
 - Configuration (Aero + FEM models)
 - Analysis process
 - Framework Environment (CJOpt)
 - Sample results
- Outcome:
 - Accomplishments
 - Lessons Learned

HSCT4.0 Support

- Federal High Performance Computing and Communication Program (HPCCP)
 - -Computational Aerospace Sciences Team
 - Project leadership
 - –NASA LaRC civil servants (~5 FTEs)
 - Bob Weston, Joanne Walsh, Jim Townsend, Andrea Salas,
 Jamshid Samareh, Vivek Mukhopadhyay, Brian Mason, Larry
 Green, Bob Biedron, Jean-Francois Barthelemy, and others
 - Problem formulation
 - Discipline analyses
 - Documentation
 - –CSC contractor team (~4 FTEs)
 - Phil Su, Raj Sistla, Ram Shan, Tham Murthy, Gus Dovi, and others
 - Software integration
 - Documentation

HPCC Program (1992-2001) (High Performance Computing and Communications)

- Computational AeroSciences Goal
 - Enable improvements to NASA technologies and capabilities in aerospace transportation through the development and application of high-performance computing technologies and the infusion of these technologies into the NASA and national aerospace community

HSCT4.0 Motivation

Meet the LaRC HPCCP-CAS goal

- Demonstrate the use of high performance computing for a challenging MDO application
 - Use high-fidelity finite-element structural and computational fluid aerodynamic analyses
 - Use distributed, heterogeneous computing environment
 - Use high performance parallel computing

Support High Speed Research (HSR) program

- Be realistic enough to interest the aerospace industry
- Aid in configuration decisions in 2000

HSCT4.0 History


1992 NASA LaRC decisions:

- Began research into automating Multidisciplinary Design Optimization (MDO) with high-fidelity analysis codes
 - Exploit HPCC as Grand Challenge application focus
- Selected High Speed Civil Transport (HSCT) as focus application
 - Exploit synergy with the High Speed Research (HSR) program

By 1999:

- Evolved into the HSCT4.0 application
 - Research endeavor in both MDO and HPCC
 - Unique combination of disciplinary breadth and depth in MDO research

In 2000: HSR cancelled HSCT4.0 cancelled

HSCT4.0 Built on Past Successes

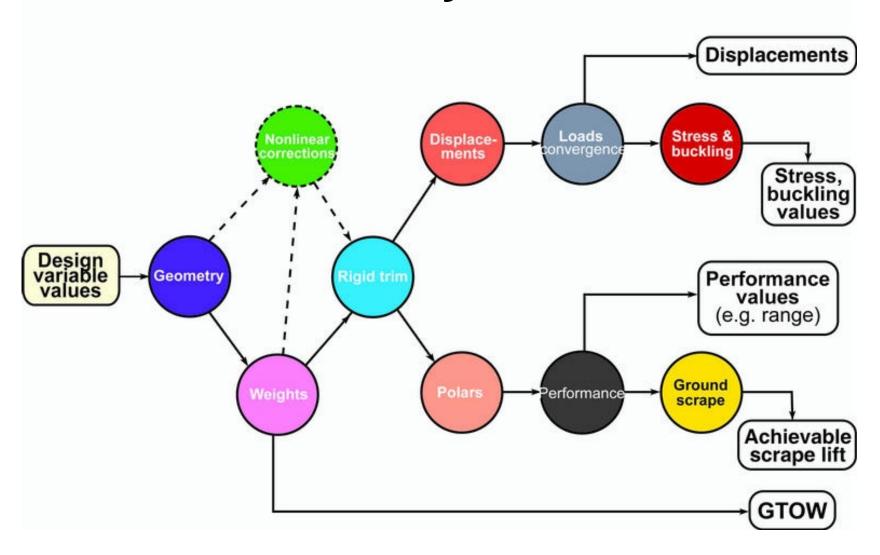
- 1992 Demonstration of hard-coded framework (FIDO)
- 1994 Communications Library added
 - Weston, R. P., Townsend, J. C., Eidson, T. M., and Gates, R. L., "A Distributed Computing Environment for Multidisciplinary Design," Proceedings of the 5th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Part 2, Panama City, FL, 1994, pp. 1091–1097
- 1996 Medium-fidelity codes added
 - Krishnan, R., Sistla, R., and Dovi, A. R., "High-Speed Civil Transport Design Using FIDO," NASA CR-1999-209693, Oct. '99
- 1998 Object-oriented environment (CJOpt)
 - Sistla, R., Dovi, A. R., and Su, P., "A Distributed, Heterogeneous Computing Environment for Multidisciplinary Design & Analysis of Aerospace Vehicles," 5th National Symposium on LARGE-Scale Analysis, Design and Intelligent Synthesis Environments, Oct 12–15, 1999, Williamsburg, VA
- 1998 Software configuration management
 - Townsend, J. C., Salas, A. O., and Schuler, M. P., "Configuration Management of an Optimization Application in a Research Environment," NASA / TM-1999-209335, June 1999
- Past HSCT analyses (e.g., Pathfinder, LCAP)

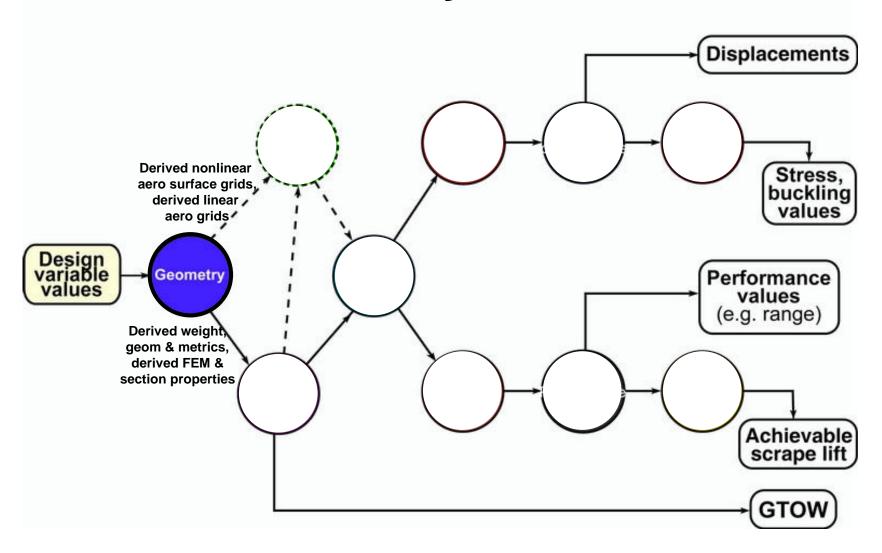
History of HPCCP – HSCT Applications

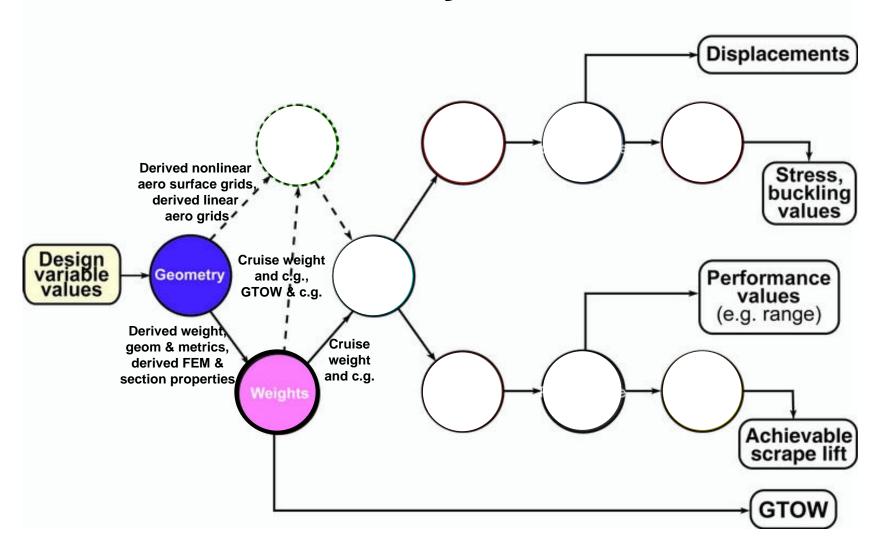
Application: (years)	HSCT2.1 ('94 – '96)	HSCT3.5 ('95 – '97)	HSCT4.0 ('97 – '99)
Emphasis:	Framework evolution		Application
Design Variables	5	7	271
Constraints	6	6	O(10,000)
Major Legacy Code Complexity	Low	Low-medium	Medium-high
Analysis Processes (without looping)	10	20	70
Analysis Control Major Loops	Weight Conv., Trim	Weight Conv., Aeroelastic, Trim	Weight Conv., Aeroelastic, Trim
Load conditions Mission conditions Processes (with loops) Total time	2 1 O(10) O(minutes)	2 1 O(100) O(hours)	8 10 O(1000) O(1 day)

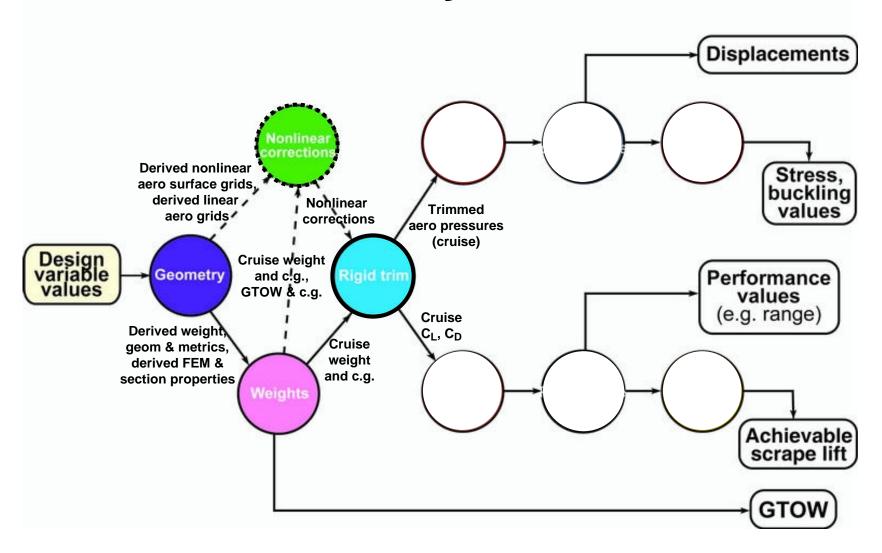
Industry Input

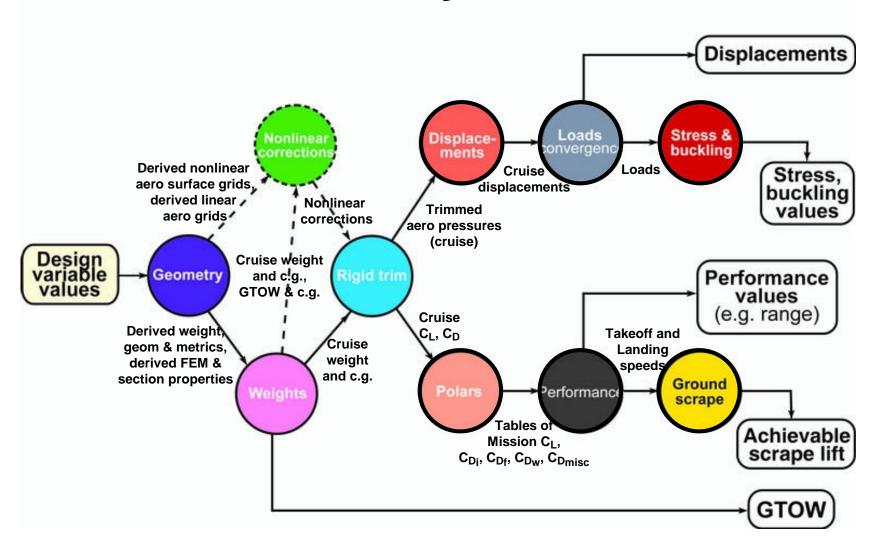
- Aerodynamic model Boeing
- Finite element model (FEM) Boeing
- Advice on load cases MacDonnell-Douglas
- Advice on acceptable codes, etc.
- Discussions on process

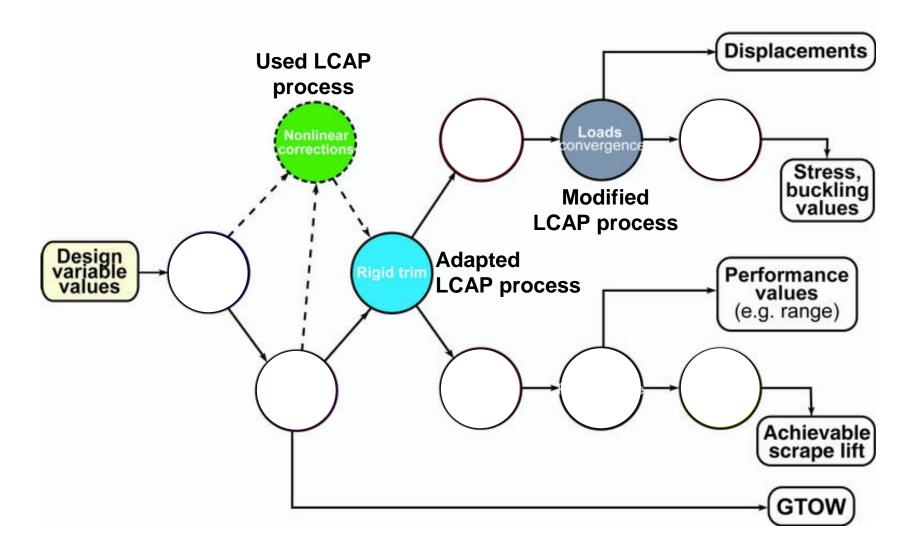

LCAP Legacy


- Same finite element model
- Reuse some analysis processes
- Reuse some computer codes
- Apply lesson on need for automation


HSCT4.0 Application


- Realistic aircraft concept from Boeing
- Aerodynamic analyses of standard and medium fidelity
 - Linear (USSAERO using 1100-point surface grid)
 - Nonlinear (inviscid CFL3D using 600,000-point volume grid)
- Structural analysis of medium to high fidelity
 - GENESIS using FEM with 40,000 degrees of freedom
- Performance analysis
 - FLOPS
- Weights analysis
 - Similar to industry
- 8 load conditions
 - 1 cruise
 - 6 maneuver (2.5g & -1.0g)
 - 1 taxi

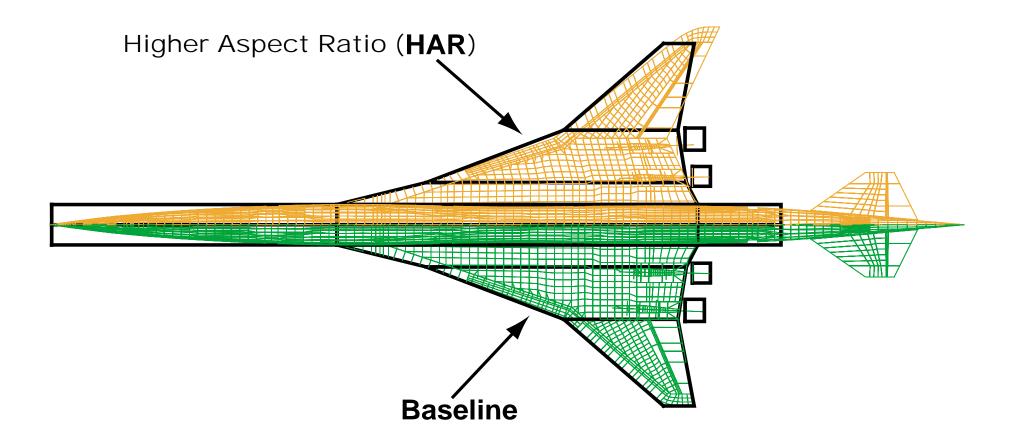




HSCT4.0 Processes from LCAP

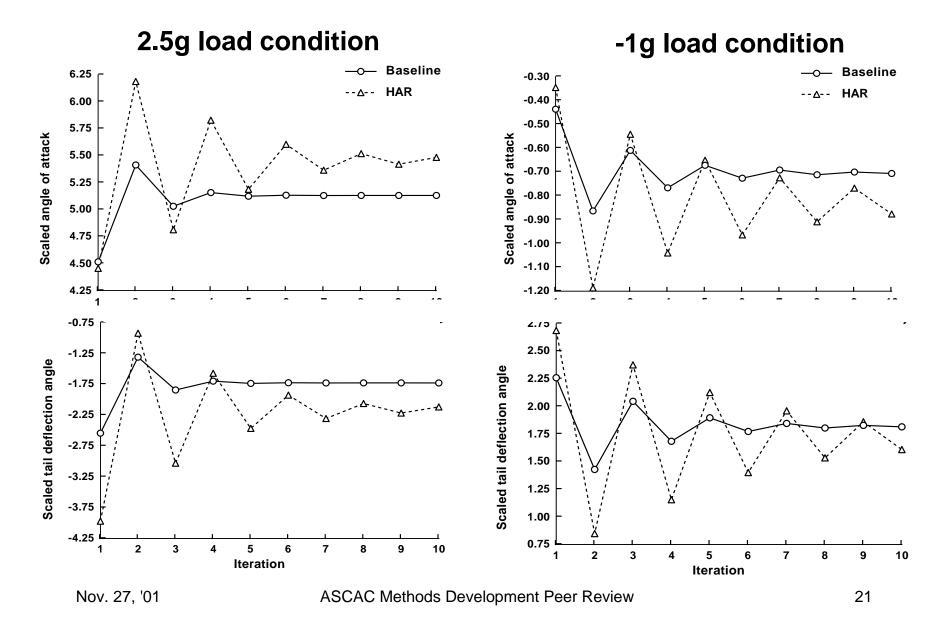
Framework – Environment

- FIDO: too rigid, too high maintenance
- No satisfactory commercial framework (1997)
- CORBA-Java Optimization (CJOpt) environment developed, based on:
 - Common Object Request Broker Architecture (CORBA)
 - Software industry standard
 - Java computer language and Application Programming Interfaces (APIs)
 - Supports object-oriented programming
 - SQL compliant database (miniSQL)
 - Common data, file name repository

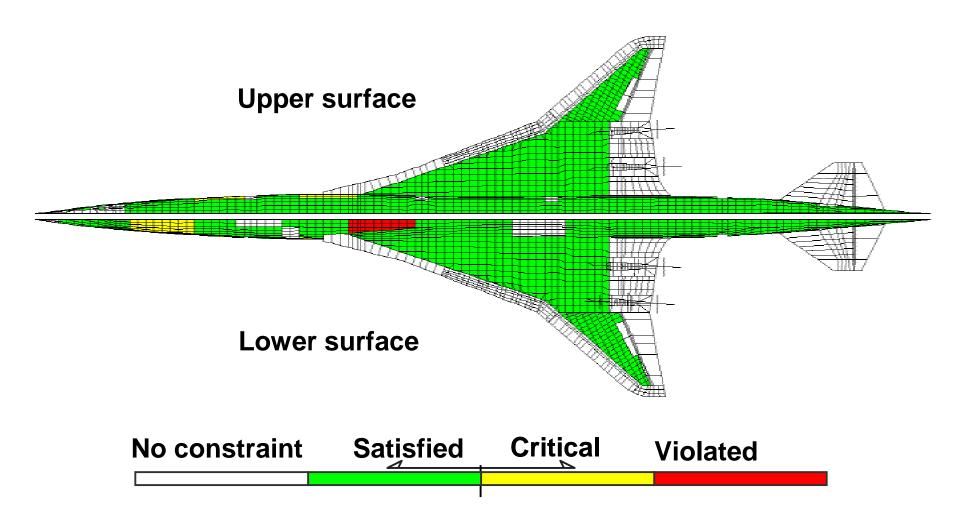

Verification

- Test cases (sets of initial design variable values)
 - Baseline
 - Higher Aspect Ratio (HAR)
- Verify integrated CJOpt results process-by-process for both test cases against "standalone codes"
 - Output files from integrated codes identical to output files obtained from running same codes in standalone mode
- Confirm that results are reasonable from an engineering standpoint
- Amount of data generated
 - 300 files
 - 200 MB total
 - 5 hrs clock time per full analysis w/o non-linear corrections

Sample Results


- Geometry process
- Loads Convergence process
- Stress & Buckling process

Geometry Process Results



Black outlines are Baseline parameterized planform shape elements.

Loads Convergence Process Results

Buckling Failure Criteria Results Baseline Configuration 2.5g Load Condition

HSCT 4.0 Outcome

Analysis process

- Formulated
- Implemented in Common Object Request Broker Architecture (CORBA) – Java environment (CJOpt)
- Verified for 2 sets of design variable values

Sensitivity analysis

- More complex problem than expected
 - Can't apply auto differentiation to COTS code
- Deferred by HSCT4.0 cancellation

Optimization

- Process demonstrated w/ nonlinear aero optimization
- Full implementation deferred by HSCT4.0 cancellation

Lessons learned

- Useful to others managing complex research projects
 - E.g., ELVIS, RACRSS

Conclusions

- Met the LaRC HPCCP-CAS goal:
 - Demonstrated the use of high performance computing for a challenging MDO application
 - Used high-fidelity finite-element structural and computational fluid aerodynamic analyses
 - Used distributed, heterogeneous computing environment
 - Showed use of high performance parallel computing
 - Demonstrated optimization with high-fidelity CFD

Support for HSR program

Large increase in realism over previous LaRC aircraft optimization efforts

Multidisciplinary High-Fidelity Analysis of Aerospace Vehicles: Overview of HSCT4.0 Application, References

Related Presentations:

- Jamshid A. Samareh and Kumar G. Bhatia (Boeing): A Unified Approach to Modeling Multidisciplinary Interactions, 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, September 6-8, 2000.
- Joanne L. Walsh, James C. Townsend, Andrea O. Salas, Jamshid, A. Samareh, Vivek Mukhopadhyay, and Jean-Francois M. Barthelemy: Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles, Part 1: Formulation, 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10-13, 2000.
- Joanne L. Walsh, Robert P. Weston, Jamshid, A. Samareh, Brian H. Mason, Lawrence L. Green, and Robert T. Biedron: Multidisciplinary High-Fidelity Analysis and optimization of Aerospace Vehicles, Part 2: Preliminary Results, 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10-13, 2000.

Related Publications:

- Joanne L. Walsh, James C. Townsend, Andrea O. Salas, Jamshid, A. Samareh, Vivek Mukhopadhyay, and Jean-Francois M. Barthelemy: "Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles, Part 1: Formulation", 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10-13, 2000. LTRS.
- Joanne L. Walsh, Robert P. Weston, Jamshid, A. Samareh, Brian H. Mason, Lawrence L. Green, and Robert T. Biedron "Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles, Part 2: Preliminary Results", 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10-13, 2000. LTRS.
- Salas, A. O., Walsh, J. L., Mason, B. H., Weston, R. P., Townsend, J. C., Samareh, J. A., and Green, L. L., "HSCT4.0 Application Software Requirements Specification," NASA/TM-2001-210867, May 2001. LTRS.

(LTRS indicates paper available on the NASA Langley Technical Report Server, http://techreports.larc.nasa.gov/ltrs/ltrs.html.)